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A B S T R A C T

Gesture recognition is a tool to enable novel interactions with different techniques and applications, like Mixed
Reality and Virtual Reality environments. With all the recent advancements in gesture recognition from skeletal
data, it is still unclear how well state-of-the-art techniques perform in a scenario using precise motions with
two hands. This paper presents the results of the SHREC 2024 contest organized to evaluate methods for their
recognition of highly similar hand motions using the skeletal spatial coordinate data of both hands. The task
is the recognition of 7 motion classes given their spatial coordinates in a frame-by-frame motion. The skeletal
data has been captured using a Vicon system and pre-processed into a coordinate system using Blender and
Vicon Shogun Post. We created a small, novel dataset with a high variety of durations in frames. This paper
shows the results of the contest, showing the techniques created by the 5 research groups on this challenging
task and comparing them to our baseline method.
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1. Introduction

The recognition of motions based on hand skeletons is becoming
a more effective and intuitive tool for Human–Computer Interaction
(HCI) applications. Especially in Virtual Reality (VR) and Mixed Reality
(MR) devices. During the years, we have seen a higher focus on using
a hand skeletal dataset for gesture recognition, however the gesture
classes used in these datasets are quite simplistic and distinct [1–3].
Furthermore, most hand gesture benchmarks use only a singular hand.
Hand gesture recognition has been an active research field for the past
25 years, where a range of different methods and network approaches
have been proposed.

In this track, we present a novel highly similar dynamic hand
gesture dataset that provides sequences of hand skeletal data using two
hands over a variable time length. We construct a novel recognition
task focusing on precise hand motions using both hands and compare
the results of the five groups that have been registered for this track
with our baseline method.

The paper is organized as follows: Section 2 presents the related
work of the previous SHREC hand gesture tracks; Section 3 presents
the novel dataset; Section 4 presents the task for the participants
and the evaluation method; Section 5 presents the participants and
their proposed methods together with our baseline method; Section 6
presents the results; and these results will be discussed in Section 7.

2. Related work

Hand gesture recognition has been a consistent research field where
several benchmarks have been created over the years. A popular bench-
mark is the SHREC’17 Track: 3D Hand Gesture Recognition Using a
Depth and Skeletal Dataset [1], featuring dynamic gestures that will
be used in interactive applications. Many methods for hand gesture
classification have been evaluated on this dynamic benchmark. The
benchmark proposed in the SHREC 2019 track on online gesture detec-
tion [2] was focused on gesture sequences and challenged methods to
lower the number of false positives. The track SHREC’21 Skeleton-based
Hand Gesture Recognition in the Wild [4] was created to test complex
gestures in the form of XR interactions. Which was later improved
on by the SHREC 2022 track on online detection of heterogeneous
gestures [5], which removed ambiguous classes and avoided annotation
issues affecting the previous SHREC 21 benchmark.

These datasets, however have weaknesses: To begin, most of these
dynamic gestures are highly focused on their global motion, namely the
swipes, cross and V classes. Which lowers the significance of looking at
the shape of the hand. Second, these benchmarks do not contain similar
or highly detailed motion classes. Lastly, all these benchmarks consist
of data using a singular hand, while some gestures might require that
they be performed using both hands.

3. Dataset creation

We created our novel benchmark, trying to overcome the weak-
nesses mentioned in the related work section. We created a novel
dataset of precise, small motions that are highly similar, using both
hands while keeping importance on both the global motion data as well
as hand shape information.

This novel small dataset is composed of 62 motions captured using a
Vicon system, consisting of 7 classes of motions divided randomly into
4 cross-validation folds. Each cross-validation fold contains 15 motions
in the test set. The 7 motion classes are:

• Pressing the clay to make it stick to the pottery wheel.
• Making a hole in the clay.
• Tightening the cylinder of the clay.
• Centering the clay.
• Raising the base structure of the clay
2

Fig. 1. Recording of hand motions using clay to create a vase by potter Kees Agterberg.

• Smoothing the walls
• Using the sponge to make the clay more moist.

We recorded the hand motions of an experienced potter who
sculpted the same pot with and without clay. Our dataset is a unique
set on the subject of molding clay. Molding clay is a precise and
delicate act where the potter makes small and precise hand movements
using both hands. Datasets of this nature are scarce in literature.
This dataset has been prepared by dedicating a professional potter,
technicians, and a fine acquisition platform (e.g., through a Vicon
Optical Motion Capture system). The setup and acquisition protocol
achievement required weeks of planning. The motions captured from
the potter are perfect for our recognition benchmark since they fit all
the aspects necessary to overcome the weakness mentioned earlier. Due
to the potter’s movements being so precise, our motions are variable
in frame length and quite long. resulting in frame lengths between 29
and 3721 frames with an average of 990 frames, compared to previous
benchmarks where motions had a frame length of 15 to 50 frames on
average.

For this project, we are using the motion capture lab at Utrecht
University.1 These recordings are done using a Vicon system.2 This
system contains 14 vantage cameras that work with the Vicon Shogun
and Vicon Shogun Post software. That will track 28 reflective soft-base
markers on the potter’s hands and body see Fig. 1. This way, we can
do full body and hand tracking in real time while the potter is at work
and record high quality motion data.

We use Vicon Shogun Post to remove any stuttering found during
the recording and to export the recording of the potter to a Filmbox
(FBX) format. We then extract the coordinate system of the hand
skeleton on a frame-by-frame basis by using a custom made small
blender script. The script exports the coordinates of the markers to
a text file where each row represents the data of a specific frame,
followed by the 28x3 coordinate float positions (14 per hand see Fig. 2
(x;y;z)) of the markers.

The structure of the coordinate system is as follows, where L and R
stand for left and right hand, respectively:

𝐹𝑟𝑎𝑚𝑒;𝐿𝐼𝑊 𝑅(𝑥; 𝑦; 𝑧);𝐿𝑂𝑊𝑅(𝑥; 𝑦; 𝑧);𝐿𝐼𝐻𝐴𝑁𝐷(𝑥; 𝑦; 𝑧);
𝐿𝑂𝐻𝐴𝑁𝐷(𝑥; 𝑦; 𝑧);𝐿𝑇𝐻𝑀3(𝑥; 𝑦; 𝑧);𝐿𝑇𝐻𝑀6(𝑥; 𝑦; 𝑧);

𝐿𝐼𝐷𝑋3(𝑥; 𝑦; 𝑧);𝐿𝐼𝐷𝑋6(𝑥; 𝑦; 𝑧);𝐿𝑀𝐼𝐷0(𝑥; 𝑦; 𝑧);𝐿𝑀𝐼𝐷6(𝑥; 𝑦; 𝑧);
𝐿𝑅𝑁𝐺3(𝑥; 𝑦; 𝑧);𝐿𝑅𝑁𝐺6(𝑥; 𝑦; 𝑧);𝐿𝑃𝑁𝐾3(𝑥; 𝑦; 𝑧);𝐿𝑃𝑁𝐾6(𝑥; 𝑦; 𝑧);

𝑅𝐼𝑊𝑅(𝑥; 𝑦; 𝑧);𝑅𝑂𝑊𝑅(𝑥; 𝑦; 𝑧);𝑅𝐼𝐻𝐴𝑁𝐷(𝑥; 𝑦; 𝑧);
𝑅𝑂𝐻𝐴𝑁𝐷(𝑥; 𝑦; 𝑧);𝑅𝑇𝐻𝑀3(𝑥; 𝑦; 𝑧);𝑅𝑇𝐻𝑀6(𝑥; 𝑦; 𝑧);

𝑅𝐼𝐷𝑋3(𝑥; 𝑦; 𝑧);𝑅𝐼𝐷𝑋6(𝑥; 𝑦; 𝑧);𝑅𝑀𝐼𝐷0(𝑥; 𝑦; 𝑧);𝑅𝑀𝐼𝐷6(𝑥; 𝑦; 𝑧);
𝑅𝑅𝑁𝐺3(𝑥; 𝑦; 𝑧);𝑅𝑅𝑁𝐺6(𝑥; 𝑦; 𝑧);𝑅𝑃𝑁𝐾3(𝑥; 𝑦; 𝑧);𝑅𝑃𝑁𝐾6(𝑥; 𝑦; 𝑧);

For the location of the markers on the left hand, see Fig. 2. The marker
locations on the right hand are in similar locations as this picture but
mirrored.

1 uu.nl/en/research/motion-capture-and-virtual-reality-lab.
2 vicon.com/software/shogun.

https://www.uu.nl/en/research/motion-capture-and-virtual-reality-lab
https://www.vicon.com/software/shogun/
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Fig. 2. Location of markers used on the left hand during recording.

. Task and evaluation

Participants are asked to develop methods that can detect and
lassify hand movements based on the given skeletal coordinate system
n the test set. The small size of the train set, the motion of two
ands simultaneously, and the precise and highly similar motions of the
otter’s hands make it a novel recognition task. That requires methods
o look into motion details as well as creating difficulty for training.

The result should consist of a single text file with a row representing
he number of motion in the test dataset, followed by the motion
lass. Participants are also required to submit their algorithms and
nformation on how to run them for verification purposes.

For the evaluation, the recognition accuracy will be computed per
lass as well as the total accuracy over the entire test set. We will
lso create a confusion matrix to extract more information from the
ethods. We also use the metrics precision (Eq. (1)): percentage of
ositive class predictions that are correct; recall (Eq. (2)): percentage of
ositive cases correctly predicted by the method; and F1 score (Eq. (3)):
harmonic average of the precision and recall.

recision = True Positive
True Positive + False Positive (1)

ecall = True Positive
True Positive + False Negative (2)

F1 score = 2 ⋅ Precision ⋅ Recall
Precision + Recall (3)

. Participants and proposed methods

Five research groups were registered for the contest and sent their
esults. A total of six submissions have been obtained with different
lassification strategies or parameters. Their methods are described in
he following subsections, and we compare their results against our
aseline method. The five groups were composed as follows:

• Group 1: SkelMAE: Skeleton-based MAE and STGCN
Omar Ikne, Benjamin Allaert and Hazem Wannous

• Group 2: Windowed Multi View
Marco Emporio, Andrea Giachetti and Joseph J. LaViola Jr

• Group 3: DET-ACTIONS: DEep-based Technique for ACTion Identifi-
cation Operations from haNd-derived Skeletons
Ruiwen He, Halim Benhabiles, Adnane Cabani, Anthony Fleury
and Karim Hammoudi

• Group 4: HMM-based classification & RNN-based approach
Konstantinos Gavalas, Christoforos Vlachos, Athanasios Papaniko-
laou, Ioannis Romanelis, Vlassis Fotis, Gerasimos Arvanitis and
Konstantinos Moustakas.
3

Fig. 3. Overview of the SHREC2024 DD-net framework.

• Group 5: SE(3)-equivariant Graph Convolutional Network
Martin Hanik, Esfandiar Nava-Yazdani and Christoph von Tycow-
icz.

5.1. Baseline: Modified DD-net

For the baseline method, we customized an algorithm from Fan
Yang et al. that showed high results in a previous SHREC hand ges-
ture track [1], namely the Double-feature Double-motion Network
(DD-Net) [6] available at GitHub.3 This network uses simple 1D con-
volutional operations to classify motions using Cartesian coordinate
features. The network architecture can be found in Fig. 3.

5.1.1. Feature extraction
DD-net derives three features from the hand joint stream, namely:

the Joint Collection Distances (JCD), the short-term slow motion Mslow,
and the short-term fast motion Mfast. The JCD is a location-viewpoint-
invariant feature that calculates the Euclidean distances between a
pair of collective joints on all frames, a feature that characterizes the
hand pose. The slow motion and fast motion features calculate the
temporal difference of the Cartesian coordinate feature to obtain the
global motions of the hand skeleton. The slow motion calculates this
for every frame, while the fast motion calculates this for every other
frame.

5.1.2. Changes for SHREC2024
For the customization of the algorithm, we first had to make sure

that all the data from the SHREC2024 track would be loaded correctly
into the algorithm. We transitioned from 22 joints in the SHREC17 [1]
track to 28 joints using both hands. Furthermore, we immediately
realized the difference in frame lengths of the SHREC17 skeletal coordi-
nate data compared to our SHREC24 data. After parameter tuning, we
realized that increasing the frame length from 32 frames to 64 frames,
128 frames or even 256 frames did not increase the global accuracy of
the method. It did however slow down the performance significantly.
In the end, we decided to use a frame length of 32 frames for the
zoom function. Afterwards, we decided to upscale the filters from the

3 GitHub-Link-Baseline-group.

https://github.com/bennie010697/DD-Net-SHREC-2024
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previous 64 filters to 256 filters. This increase in the number of filters
improved the accuracy of the classification in the test set on motion
classes like ‘‘Centering’’ and ‘‘MakingHole’’.

5.1.3. Implementation details
We trained each model on DD-net for 500 epochs using an Adam

optimizer. With an annealing learning rate that drops from 1 × 10−4 to
5 × 10−6. We did not apply pre-trained weights. We experimented with
different frame lengths and filter sizes to see the effect on the global
accuracy of the model. All models are implemented in TensorFlow. We
trained the system on an Intel(R) Core(TM) i7-7700K CPU @ 4.2 GHz
with 32 GB 3000 MHz DDR4 RAM.

5.2. Group 1: SkelMAE: Skeleton-based MAE and STGCN

5.2.1. Method description
Group 1 proposed an innovative approach to improve skeleton-

based hand gesture recognition by integrating self-supervised learn-
ing, a promising technique for acquiring distinctive representations
directly from unlabeled data and showed to be useful in case of lim-
ited annotated data [7,8]. The proposed method takes advantage of
prior knowledge of hand topology, combining topology-aware self-
supervised learning with a customized skeleton-based architecture to
derive meaningful representations from skeleton data under different
hand poses.

The proposed Mask Auto-Encoder (MAE) [9] is based on a Vi-
sion Transformer (ViT) [10] architecture adapted for skeletal data
processing, with some novelties including: (1) Integration of Fourier
feature mapping, showed to outperform linear mapping in captur-
ing spatial relationships [7,11]. (2) A modified attention mechanism
formula that incorporates adjacency information, enhancing joints spa-
tial connectivity encoding. Code and trained models are available at
GitHub4

5.2.2. Masking strategy
We propose to use a widely adopted technique involving randomly

masking a number of joints in the hand skeleton [8,9]. We adapt this
method to randomly mask a given ratio of joints in each hand (see
Fig. 4).

5.2.3. Model architecture
The architecture of the MAE is designed to process skeletal data.

It is based on an asymmetric encoder–decoder architecture, both built
upon the ViT model as illustrated in Fig. 4.

Encoder. Based on ViT model, we design our encoder to process skele-
ton data. Given the non-masked joint-level coordinates 𝑣 of a hand
skeleton, the encoder employs a Fourier feature mapping 𝛾(𝑣) [11] to
project spatial coordinates into a higher-dimensional space using sine
and cosine functions of different frequencies. Fourier features embed-
ding enhances the model’s ability to capture spatial relationships in the
skeleton data. By representing joint movements and interdependencies
as frequencies, the model gains a more comprehensive understanding
of the nuanced patterns in skeletal structures.

The Fourier feature mapping is employed to embed the 3D coor-
dinates (𝑥, 𝑦, 𝑧) into a 256-dimensional vectors. They are then fed into
a series of ViT blocks including a self-attention mechanism and feed-
forward layers to learn distinctive features in latent space for each
hand pose. This architecture allows the encoder to capture complex
relationships and dependencies between skeleton joints.

The MAE encoder is implemented based on a ViT of depth 6,
with attention mechanisms in each layer with 8 heads for multi-head
attention and incorporates feed-forward networks with a dimension of
512. The embedding dimension is set to 256.

4 GitHub-Link-group1-SkelMAE.
 m

4

Decoder. The decoder is designed to reconstruct the masked joints in
the skeleton data. It operates identically to the encoder, but with a
different set of parameters. It first adds positional embeddings specific
to the decoder. Then it concatenates the masked tokens, represented
by a learnable mask token, with the encoded non-masked joints to-
kens. Subsequently, the decoder attends to this combined sequence
using a ViT transformer. Finally, the model predicts the missing joints’
coordinates.

The MAE decoder is built as a counterpart to the encoder, adopt-
ing the ViT architecture with a depth of 6 and an 8-head attention
mechanism for multi-head attention.

Enhancing spatial connectivity. Spatial connectivity between hand joints
is crucial for accurate recognition of hand gestures. While ViT models
intrinsically capture a certain level of spatial relationships in their
attention mechanisms, the anatomical constraints of the hand skeleton
can benefit from the explicit integration of adjacency matrices. In our
approach, we incorporate adjacency matrices during both the encoding
and decoding.

The inclusion of adjacency matrices improves spatial modeling, en-
abling the attention mechanism to explicitly take into account the spa-
tial layout of hand joints. The modified attention mechanism formula
is provided in Eq. (4).

Attention(𝑄,𝐾, 𝑉 ,𝐀) = softmax
(

𝑄𝐾𝑇
√

𝑑𝑘
⊙ 𝐀

)

𝑉 (4)

In this context, 𝑄, 𝐾, and 𝑉 represent the query, key, and value
components of the original attention mechanism [12]. While 𝐴 denotes
the adjacency matrix, embedding spatial connectivity between hands
joints.

For the encoder, we only consider the connectivity between the
non-masked joints (masked adjacency matrix), while for the decoder,
the connectivity between all joints is considered (complete adjacency
matrix). The proposed adjacency matrix is illustrated in Fig. 5.

We employ the Mean Squared Error (MSE) as the main loss function
for the MAE.

5.2.4. Fine-tuning for dynamic hand gesture recognition
To assess the ability of the MAE model to acquire discriminative rep-

resentations of the hands at various poses, we rely on the Space–Time
Graph Convolutional Network (STGCN) [13] as the backbone architec-
ture for skeleton sequence classification. The STGCN has demonstrated
remarkable capabilities in learning temporal relationships, enabling it
to identify complex patterns in sequential data.

Given a sequence of 3D hand joints, we use the MAE pre-trained
encoder to acquire the learned representations (latent space), which
then serve as the basis for training the STGCN.

5.2.5. Implementation details
For MAE training, we selected the AdamW optimizer with a learning

rate of 2×10−4 and a weight decay of 5×10−2. The learning rate is grad-
ually reduced during training using Cosine Annealing scheduler [14].
The masking ratio is set to 0.7, meaning that 70% of the joints are
randomly masked in each hand.

For the STGCN, we set a sequence length of 3000 frames, either
padding or truncating sequences accordingly. For training we employed
the AdamW optimizer with a learning rate of 1 × 10−3 and a weight
ecay of 5 × 10−4. The learning rate is gradually reduced using the
ame scheduler as for MAE. We adopt the cross-entropy loss with label
moothing of as the fine-tuning loss with a smoothing rate of 0.1.

Pre-training spans 100 epochs with a batch size of 64, while fine-
uning spans 30 epochs with a batch size of 2. All models are imple-

ented in PyTorch.

https://github.com/o-ikne/skelmae-shrec24.git
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Fig. 4. Proposed MAE for hands skeleton reconstruction. We mask a given ratio of joints in each hand, the unmasked joints are encoded by the encoder while taking into account
their connectivity given by the masked adjacency matrix. The encoded joints are then concatenated with the masked tokens and passed through the decoder along with the
connectivity matrix to reconstruct the masked joints.
Fig. 5. SkelMAE: proposed hand adjacency connections.

5.3. Group 2: Windowed multi view

5.3.1. Method description
Group 2 leveraged a method successfully applied on a continuous

gesture recognition task, On-Off deep Multi-View Multi-Task [15],
adapted for this specific action recognition problem. Starting from
the OO-dMVMT code,5 they adjusted it by eliminating the multi-task
omponent. As in their original work, providing state-of-the-art perfor-
ances on continuous gesture recognition benchmarks [2,5].

The network used for the windows’ classification and the input fea-
ures used to feed it are derived from the Double-feature Double-motion
etwork (DD-Net) [6] framework. The network is based on a simple
D convolutional neural network and provides a good classification of
egmented gestures. The network is trained with feature arrays that are
erived by the original hand joints stream, for each input sequence are
xtracted three features:

• Joint Collection Distances (JCD): Represents the Euclidean dis-
tances between pairs of collective joint features, invariant to
location and viewpoint.

• Short-term slow motion Mslow: Calculates the 1-frame linear veloc-
ity for every individual joint across all joints.

5 GitHub-Link-group2-Windowed-Multi-View.
5

• Short-term fast motion Mfast: Similar to short-term slow motion, but
linear velocity is computed every other frame, skipping the ones
in between.

In practical terms, Mslow and Mfast model the short-term global
motion of the skeleton in terms of speed, while JCD characterizes the
hand pose.

Group 2 trained the network to classify fixed-sized windows of the
hand pose stream. In the testing phase, it predicts a label for a set of
windows of the same size sampled in the processed action stream. The
action label of the test sequence is then obtained with a majority voting
over the window set.

5.3.2. Sliding-window approach
We incorporated the sliding-window approach proposed in the ges-

ture recognizer On-Off deep Multi-View Multi-Task paradigm (OO-
dMVMT) [15]. Rather than feeding the entire sequence directly into the
network, we decompose the sequence into smaller windows. We extract
DD-Net features for each of these windows. Subsequently, we assign the
corresponding action label to each window. All the windows extracted
in this manner collectively form the input dataset for the network.

5.3.3. Fine-tuning of parameters
The network underwent testing with window sizes 16, 50, and

100 frames. We maintained a consistent 10% shift between windows,
resulting in 1, 5, and 10 frames distance between the center of one
window and the next. Upon analysis of our graphs all window sizes ex-
hibit strong performance during training phase. However the 100-frame
windows achieved the best results in classifying.

5.3.4. Train and test
To assess the method’s effectiveness, we partitioned the Training-

set, allocating approximately 75% for training and the remainder for
validation. During the dataset loading phase, each sequence is seg-
mented into windows of 100 frames, with a step size of 10 frames
between the center of one window and the next. These windows,
created through this process, are utilized for training the network. In
each epoch, the network undergoes testing on the validation dataset.
If the network achieves a superior result compared to the previously
saved one, the network parameters are then saved.

After completing 100 training epochs, the test set sequences are
sequentially segmented into windows and provided as input to the

network to evaluate its effectiveness.

https://github.com/intelligolabs/OO-dMVMT
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Fig. 6. Overview of DET-ACTIONS bottom-up deep learning-based analysis framework for hand motion recognition.
5.4. Group 3: DET-ACTIONS: DEep-based technique for ACTion identifica-
tion operations from haNd-derived skeletons

5.4.1. Method description
Group 3 proposed a deep learning based framework for action

recognition illustrated in Fig. 6 available at Google Colab.6 First, an
action augmentation stage is operated over the imbalanced action data
through an offline stage. Our augmentation aims to produce the same
number of action files per action category. To perform this augmenta-
tion, we apply an ordered interpolation (e.g. a variant of [16]) over
frame coordinates of an action file in order to generate a new one. This
interpolation acts as an action motion translation and is guided by an
alpha parameter which regulates the translation steps for generating a
number of actions which is equal to the maximal number of actions
contained in a class category amongst the original dataset. Once the
number of action files balanced for each class, we apply a feature
extractor over each single frame contained in an action file in order
to get a feature vector of dimension 16. Then an online augmentation
stage is performed on the transformed action files by using a sliding
window-based strategy [17].

To this end, a set of n successive frames is considered (n = 14)
in order to take into account the temporal dimension. This operation
which is repeated with an overlapping step equal to one permits to pro-
duce m sequences of temporal-aware features (each one of dimension
224). Then, a MLP-based classifier is employed to predict a membership
class to an action from a temporal-aware feature. The prediction of the
class of the input action file is finally calculated by applying a major
voting over the output class predictions obtained from the m temporal-
aware features. Our analysis framework operates through a bottom-up
strategy in the sense that frames are first individually characterized by
considering that each frame represents a pattern of an action motion.
Then characterized frames are aggregated for being processed by se-
quences in order to embed the temporal dimension. Additionally, two
successive augmentations are applied towards improving the classifica-
tion performances. The core component of our framework which is a
CNN-based feature extractor is described hereafter.

5.4.2. Single frame-based feature extractor
To build our feature extractor from a single motion frame, we

designed a CNN-based architecture [18] which is illustrated in Fig. 7.
The architecture is composed of two successive processing backbones
namely image generator and classifier. The image generator takes in

6 Colab-Link-group3-DET-ACTIONS.
6

input 𝑓𝑖 vector corresponding to the 28 3D raw coordinates of the
hand markers (LIWR(x;y;z), etc.) and transforms it into a new frame
representation, namely a feature map 𝑀𝑖 (28 × 28). The feature map is
then injected into the classifier backbone to predict its action class 𝐶𝑖.
The final features are extracted from the intermediate global average
pooling layer preceding the output layer and corresponding to a vector
of dimension 16. It is worth mentioning that the whole architecture is
trained on the dataset including augmented actions.

5.4.3. Implementation details
Our method is implemented in Google Colab, Colab GPU runtime

comes with an Intel Xeon CPU @2.20 GHz, 13 GB RAM, a Tesla K80
accelerator, and 12 GB GDDR5 VRAM. The training to create our two
pre-trained files: The MLP classifier and the CNN feature extractor took
around 30 min.

5.5. Group 4 Run1: HMM-based classification

5.5.1. HMM-based classification
The proposed method utilizes an array of Hidden Markov Mod-

els (HMMs) with Gaussian mixture emissions. HMMs are known to
be particularly well suited for modeling and classifying signals that
demonstrate intrinsic temporality, like human speech [19] and move-
ment [20]. This makes them a promising choice for the present task of
hand action recognition. Our code is available at GitHub7

5.5.2. Architecture
The basic architecture of the proposed solution is illustrated in

Fig. 8 Each input sequence is initially filtered, processed and flattened
to a single vector (ℎ), which is then fed to 𝑁 distinct HMMs. Each
HMM models one of the observed actions (classes) and, using a scoring
function, evaluates the (log) probability of the given input sequence.
The most likely match can then be extracted using a simple voting
system based on the generated probabilities.

Each processing step is described in detail in the following para-
graphs.

7 GitHub-Link-group4-1-HMM.

https://colab.research.google.com/drive/1fi4PPsHp9K50vg9qLBFYWCzk5A5_kPP2?usp=sharing
https://github.com/GavalasDev/shrec2024
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Fig. 7. CNN-based architecture for feature extraction from a single motion frame.
Fig. 8. Architecture of the proposed HMM-based method.
.5.3. Preprocessing
Each of the provided examples is compromised of a sequence of

rames, with each frame containing the coordinates of each marker. In
rder to train the HMMs, each sequence has to be converted to a single
ector. Different ways of generating this representation were tested
nd compared, with the most efficient ultimately being interlacing the
osition data with estimated velocity data:

𝑡 = [𝑥1 𝑦1 𝑧1 𝛥𝑥1 𝛥𝑦1 𝛥𝑧1 𝑥2 𝑦2 𝑧2 𝛥𝑥2 𝛥𝑦2 𝛥𝑧2 ⋯ ] (5)

ℎ = [ℎ0 ℎ1 ℎ2 ⋯ ] (6)

The velocity of each marker is estimated as the difference between
the current coordinates of the marker and those of the previous frame.

Another useful preprocessing step identified during testing was
filtering the data by keeping only markers placed on the subjects
fingertips (THM, IDX, MID, RNG and PNK), wrist (IWR and OWR) and
enter of the hand (IHAND). This improves training speed without
ffecting the models performance, as the positions of the other markers
eem to provide mostly redundant information.

Finally, each sequence can be downsampled by only keeping every 𝑛
rames. This improves training speed and, in some cases, also improves

erformance as the delta values become more intensified.

7

5.5.4. HMMs
One fully connected first order HMM is fitted to model the pro-

vided training examples of each separate class using the Expectation–
Maximization (EM) algorithm [21]. The observations for each state are
modeled using a Gaussian Mixture Model (GMM) with a full covariance
matrix. The number of states of each HMM, as well as the number of
states of each GMM are considered free variables.

The implementation of HMMs used was provided by the hmm-
learn8 python library, while hyperparameter optimization was per-
formed based on leave-one-out cross validation (LOOCV) manually and
automatically using Optuna [22].

5.6. Group 4 Run2: RNN-based approach

5.6.1. RNN-based approach
The data was provided as sequences of frames requiring classifica-

tion. This made Recurrent Neural Networks (RNN) perfect for the task.
A bidirectional Long Short-Term Memory (bi-LSTM) layer was used as
the RNN layer, in order to extract the features from the data, preserving
temporal relations. The features were subsequently fed into a linear
layer with one output per class in the dataset, representing the score
for that particular class. Our code is available at GitHub.9

8 https://github.com/hmmlearn/hmmlearn.
9 GitHub-Link-group4-2-RNN.

https://github.com/hmmlearn/hmmlearn
https://github.com/ChristoforosVlachos/shrec2024
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Fig. 9. Schematic of the proposed manifold GCN architecture.
The dataset featured a few interesting challenges. Its rather small
ize would give most neural networks a tough time learning meaningful
roperties while avoiding overfitting to the exact input. To combat the
forementioned issue, we designed our LSTM to be relatively small
n size, only including one hidden layer of 128 neurons. Additionally,
he provided dataset was heavily imbalanced; a weighted cross-entropy
oss criterion, whose weights reflected this imbalance, was used in the
raining loop. The possibility of using focal loss [23] was investigated,
ut no noticeable improvement during training was observed.

The coordinates of the data were centered around (0, 0, 0) and
ormalized to lay within the range [−1, 1], keeping the aspect ratio

intact. Xavier initialization [24] was used to initialize the trainable
parameters of the network and the Adam optimizer with a learning
rate of 0.001 was used in the training process. The data was not fed in
batches into the network. We experimented using batches and padding
the samples to include the same number of frames but, probably due to
the vastly different number of frames between each sample, the results
were significantly worse.

5.6.2. Implementation details
The training took place for just under 2 h on our NVIDIA RTX™ 2060

UPER GPU with 8 GB of video memory, over 3000 epochs (the dataset
as kept loaded in RAM). Early results were promising, regularly
anaging higher than 50% accuracy on both the training and test
atasets. The test dataset accuracy, specifically, was closely monitored
hroughout the training process. With no regularization means (other
han the small network size), we had to ensure that the quick drop in
raining loss and increase in the training set accuracy was not a product
f overfitting and that the accuracy of the test set remained close to that
f the training set.

.7. Group 5: SE(3)-equivariant graph convolutional network

.7.1. Method description
Group 5 interpreted the hand motions as sequences of point clouds

n three-dimensional space. For such data, methods from the field of ge-
metric deep learning have delivered excellent results. Indeed, through
he built-in invariance/equivariance under the symmetries of the data,
hese approaches can learn desired relationships very effectively. Since
ime series naturally define neighbor relationships, we utilize the power
f graph neural networks. The code to reproduce our experiments can
e found online.10

.7.2. Feature design
We describe the molding motions as sequences of anatomically

orresponding landmarks, i.e., labeled points in three-dimensional Eu-
lidean space, as opposed to the common deep learning approach of
iewing vectors as collections of independent, one-dimensional fea-
ures. Taking this viewpoint allows methods from geometric deep
earning to be invariant under (three-dimensional) rigid motions, an
nvariance that the classification function we want to learn should also
ossess.

10 GitHub-Link-group5-SE(3)-GCN.
8

5.7.3. Network architecture
An ensemble of ten manifold graph convolutional neural networks

performs our prediction. This architecture for graph learning tasks was
introduced in [25]; it is particularly suited to exploit the symmetries of
the data space. Our manifold GCN receives 28 channels, each operating
on a different 3D landmark, and consists of two types of blocks: an
‘‘equivariant block’’ comprising a (convolutional) diffusion layer with
sigmoid-type activation followed by a node-wise tangent multilayer
perceptron (MLP), and an ‘‘invariant block’’ that combines a diffusion
layer with a node-wise manifold invariant layer. Other than permuta-
tion invariant networks for point clouds (e.g., deep sets), we employ
geometric fully connected layers on the vector-valued channels to
exploit the landmark correspondence. Our architecture stacks multiple
equivariant blocks before a single invariant one. To obtain a sequence-
level output, we then perform a flat pooling, viz. a concatenation of
mean and max pooling, and feed the result to a final (vanilla) MLP.
Eventually, the softmax function is employed to map the model output
to class probabilities. Fig. 9 illustrates the proposed architecture.

With the chosen Euclidean features, the network is invariant under
joint rigid motions of a sequence, i.e., when the same rigid motion is
applied to each and every frame. This property leads to a reduced num-
ber of parameters, which helps cope with the small amount of training
data. The final prediction is obtained from ten of these models by taking
the geometric median [26] of their predicted class probabilities based
on the Fisher–Rao distance [27] and choosing the most likely class.

Through a hyper-parameter search, we found that the following
configuration provides the best performance: We only use the invariant
block with a diffusion layer that performs one Euler step; the MLP has
three layers mapping from 28 to 14 to 7 dimensions. The resulting
network has only about 3000 trainable parameters; we believe that this
‘‘slim’’ network performs best because it is less prone to overfitting the
small training set.

5.7.4. Training
We trained each of the ten models with RMSProp for 300 epochs

on a different 3:1 training–validation split of the full training set; the
learning rate was 0.001 and the batch size was one. We employed
the common weighted cross-entropy loss, with the inverse number of
training samples of each class as the class weight. The final model was
selected among those with 100% training accuracy as the first with the
highest validation score.

6. Results

Table 1 shows the total accuracy per method over the four cross-
validation folds created for this challenge. We can see that group 3
DET-ACTIONS: performed the best with a total accuracy of 91.67%.
The bar charts in Fig. 10 show the per-class precision, recall, and F1
scores of all the methods.

Looking at the bar charts in Fig. 10, we can see that most issues
are made with the highly similar motions ‘Smoothing’ and ‘Raising’
and in the recall of the ‘MakingHole’ class. The retrieval issues in the

https://github.com/morphomatics/SHREC24
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Fig. 10. Performance metrics per motion class.
Table 1
Total accuracy per group over all the folds.

Method Accuracy

DD-Net 0.8167
SkelMAE 0.8667
Windowed Multi View 0.7167
DET-ACTIONS 0.9167
HMM-based approach 0.75
RNN-based approach 0.8677
SE(3)-equivariant GCN 0.75

Fig. 11. Static picture of the Smoothing motion (left) where the potter uses his
halanges and the Raising motion (right) where the potter uses the tips of his fingers.

Smoothing’ and ‘Raising’ classes can be understood by looking at these
otions. These motions are highly similar due to the fact that the
otter’s left hand makes the same motion, while his right hand makes
similar upward motion in both classes. The difference between these

wo motions is in how the potter’s right hand is angled. See Fig. 11 for
better visualization between the two hand motions.

As mentioned before, the recall rate of the ‘MakingHole’ motion
lass is struggling. This can be explained due to the cross-validation
olds that we have created, in combination with the underrepresenta-
ion of the class itself. The ‘MakingHole’ class has a total of 5 motions
9

Table 2
Amount of parameters and training time in seconds for a singular fold.

Method Params Training time

DD-Net 27.536.263 1.210
SkelMAE 27.767.693 3.180
Windowed Multi View 213.308 817
DET-ACTIONS 190.036 1800
HMM approach 2450 804
RNN approach 220.935 6.600
SE(3)-equivariant GCN 3.003 503

captured; 3 of those 5 motions are in the test set for fold 2. This
meant that the retrieval techniques only had 2 motions of the class
‘MakingHole’ to train on for this fold. The ‘MakingHole’ and ‘Centering’
dynamic motions both begin with a downward motion from the right
hand, which might clarify the confusion of the methods. They also both
use the left hand to stabilize and centralize the clay. However, in the
‘MakingHole’ motion class, the right hand uses the index finger and
middle finger to create a hole at the end of the motion instead of them
resting on the clay.

Table 2 shows the total number of parameters in the network, and
the required time for training in seconds for all methods. We would
like to note that for this challenge, we did not tell our participants that
we would evaluate them based on their performance in terms of speed.
This means that many of our methods are not optimized to perform
on this metric. Furthermore, each method has been trained on its own
computer specifications. The training specifications can be found in
each group’s specific method description in Section 5.

7. Discussion

The evaluation outcomes provide insights that state-of-the-art tech-
niques can indeed provide promising scores given the limited data size,
large variation in frame lengths, and high detail of the motions. Given
the small amount of time available for the contest, we can say that these
results are exceptional. We have seen many different methods and net-
work approaches, namely: Convolutional Neural Networks, Recurrent
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Neural Networks, the Hidden Markov Models, and Space–Time Graph
Convolutional Networks.

The issue that the gesture class ‘MakingHole’ got predicted as the
motion class ‘Centering’ by all methods could derive from the limited
test and train data. The gesture ‘MakingHole’ exists a total of 5 times
in the entire train and test set, while centering exists a total of 16
times. Creating a higher saturation on the ‘MakingHole’ motion classes
could have solved this issue. We do however believe that the issues in
the ‘Smoothing’ and ‘Raising’ classes do derive because they are highly
similar in both the left and right hand.

8. Conclusion

In this paper, we have presented a novel dynamic hand gesture
dataset and reported and analyzed the results of the submissions for the
SHREC 2024 track on Recognition Of Dynamic Hand Motions Molding
Clay. The evaluation of the proposed methods shows that there are
many different methods and network approaches that show high results
on classifying hand movements using both hands with precise and
highly similar motions on a small training set. Due to the small test set,
we believe that it is necessary to continue the evaluation on a larger
test set to get a more accurate evaluation of the methods. A possible
future research direction could be to improve on this dataset, both
increasing the number of gestures and the amount of gesture classes.
We can achieve this by recording a higher number of subjects and by
creating more pottery. This might give us a better insight on how to
solve the problem of highly similar motions. We do believe that to bring
the field of hand recognition further. There should be a focus on hand
gesture recognition for highly detailed, highly similar motions using
both hands.
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